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ABSTRACT 

 

This paper presents the proposal of A new methodology for the identification of residential 

equipment in non-intrusive load monitoring systems that is based on a Convolutional Neural 

Network to classify equipment. The transient power signal data obtained at the time an 

equipment is connected in a residence is used as inputs to the system. The methodology was 

developed using data from a public database (REED) that presents data collected at a low 

frequency (1 Hz). The results obtained in the test database indicate that the proposed system is 

able to carry out the identification task, and presented satisfactory results when compared with 

the results already presented in the literature for the problem in question. 
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1. INTRODUCTION 

 
The reduction and rationalization of electricity consumption are increasingly becoming priorities, 

not only for residential consumers, but also for electric power companies and government. 

Considering this concern, which is worldwide, research in Non-Intrusive Load Monitoring 

(NILM) has been emphasizing. Research in this area began in 1992 with the presentation of the 

work of George W. Hart [1] and since then many works have been presented, focusing on the 

various stages of a NILM system. 

 

A NILM system has as main objective to measure an aggregate load of a residence through a 

single sensor, placed in the central meter of the residence. From the aggregate load, measured 

over a period of time, it is possible, through specific software, to carry out an identification of the 

electric equipment in operation and obtain the individual consumption thereof, in addition to 

obtaining the operating hours of each equipment [1]. This information can be used by residential 

consumers to take actions aimed at reducing and rationalizing their consumption, thus ensuring 

greater energy efficiency. In addition to this main functionality of the NILM systems, it is also 

possible to highlight: the possibility of identifying the load profile of a residence; possibility of 

identifying non-standard behavior of loads; possibility of detection of power failures and thefts; 

possibility of the use of the information of the load disaggregated by the electric power 

concessionaires that can promote aid to their customers in the process of identification of waste 
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during peak hours, thus helping to reduce consumption during these periods, offering for this 

incentive to consumers [2]. 

 

Considering the good results already presented by the academic community involving deep neural 

networks for the NILM problem, this paper presents the results obtained from the application of 

Convolutional Neural Networks for the problem of equipment identification. Here, unlike what 

we already have in the literature, a CNN network was developed to identify the type of equipment 

from the transient power signal data obtained at the moment an equipment is connected. The 

choice of the use of the transient power signal is due to the fact that each type of equipment 

presents different transient signal characteristics, depending on the generation mechanism, which 

is suitable for the development of classification systems. For the development and testing of the 

proposed system, the public database was used, and much used by researchers in the area, REDD 

(Reference Energy Disaggregation Dataset) [3]. This database has data of several equipments that 

were collected individually in 6 different residences at a frequency of 1 Hz. The system was 

developed to identify 7 equipments, these being classified as on / off loads, multilevel or variable. 

 

2. NON-INTRUSIVE LOAD MONITORING SYSTEMS 
 

The non-intrusive load monitoring aims to obtain a good approximation of the various electric 

devices in operation in a residence, using dedicated hardware and software [4]. The monitoring 

and identification of loads are performed based on the analysis of measurements of a single point 

of current and voltage of the aggregate load obtained through a meter outside the residence. Since 

each electrical equipment has its own profile of energy consumption called the electric signature, 

the developed algorithms try to identify such signatures in the aggregate load curve, thus 

indicating the periods of operation of the equipment and their respective energy consumption. 

The methodology of a NILM system is based on four main steps, as can be seen in Figure 1, 

which are the signal acquisition, event detection, characteristic extraction and equipment 

identification, as can be seen in Figure 1. 

 

 

Figure 1 Residential electricity system with integrated NILM system 

 

During the signal acquisition step, the aggregate load is measured through a single sensor on the 

main branch that is outside the residence. Figure 5 shows an example of the load measured over a 

period of 1 hour for one of the 7 equipment chosen (Refrigerator). For this stage we use the public 

database REDD (Reference Energy Disaggregation Data Set), being one of the most used in the 
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field of NILM systems research. REDD consists of data collected in six households, and contains 

aggregate electrical power data collected at the 1Hz frequency [3]. Table 1 shows the equipment 

per household that was measured in REDD. 

 

 
Figure 2 Load example measured over an hour 

 

Table 1.  Description of the houses and devices used in the evaluation in REDD data set [3]. 

House Device Categories 

1 Electronics, Lighting, Refrigerator, Disposal, Dishwasher, Furnace, 

Washer Dryer, Smoke Alarms, Bathroom GFI, Kitchen Outlets, 

Microwave 

2 Lighting, Refrigerator, Dishwasher, Washer Dryer, Bathroom GFI, 

Kitchen Outlets, Oven, Microwave, Electric Heat, Stove 

3 Electronics, Lighting, Refrigerator, Disposal, Dishwasher, Furnace, 

Washer Dryer, Bathroom GFI, Kitchen Outlets, Microwave, Electric 

Heat, Outdoor Outlets 

4 Lighting, Dishwasher, Furnace, Washer Dryer, Smoke Alarms, Bathroom 

GFI, Kitchen Outlets, Stove, Disposal, Air Conditioning 

5 Lighting, Refrigerator, Disposal, Dishwasher, Washer Dryer, Kitchen 

Outlets, Microwave, Stove 

6 Lights, refrigerator, crazy washer, heater, clothes dryer, bathroom 

equipment, cooking utensils, cooker, electronic, air conditioning. 

 
Still in the first stage, 7 electric appliances were chosen for the development of the planned 

system that was based on a convolutional neural network for the identification of the equipment 

These were as follows: a microwave, oven, stove, a dishwasher, an air conditioning, a 

washer/dryer and a refrigerator. The chosen equipment can be regarded as comprising the 

machines that consume most energy in a household. According to Batra [5], priority should be 

given to identifying the equipment that uses most energy in the dwellings because these 

appliances have the most significant features in the aggregate load and thus other appliances that 

consume less can be regarded as the only noisy items in the total aggregate load. 

 

In the event detection stage, the on / off moments of equipment in a residence (event) are detected 

from the aggregate signal. In order to detect abrupt changes in the signal, a methodology was 
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used based on an analysis window that scans the whole measured aggregate load, and it is 

possible to identify the occurrence of an event when the difference between the final average) and 

the initial mean (left margin mean) of the window reach a predetermined threshold value, as can 

be seen in Figure 2. For each detected event, the first twelve transient samples were separated to 

form the training database of the system. The choice of the number of samples to be used as input 

to the system was based on the evaluation, for all equipment, of the number of samples sufficient 

to characterize a complete transient. 

 

 
Figure 3 Event Detection Through Windowing 

 
With the detected events, the third stage, of characteristic extraction or electric signatures, takes 

place. Electrical signatures represent a set of characteristics of voltage, current or power for a 

given equipment, and can be divided into macroscopic and microscopic. The macroscopic (low 

frequency) characteristics must be obtained from a sample period of up to one sample per cycle (1 

Hz), which is the focus of this work. In the fourth and last step, from the characteristics / 

signatures extracted, we have the identification of each equipment for each detected event. 

Methods for identifying equipment used in NILM systems may be of the supervised or 

unsupervised type. 

 

2.1. Previous work on approach NILM systems 

In [6] the authors point out the main supervised techniques to solve NILM problems, such as 

Artificial Neural Networks (ANN), Supporting Vector Machines (SVM), Naive Bayes Classifier 

and K-Nearest Neighbor (KNN). Recently the researchers have turned their attention to the use of 

Deep Neural Networks to the problem of equipment identification. In [7] the authors apply 3 

types of deep neural networks, a recurrent neural network based on Long Short Term Memory 

Units, a self-encoder neural network and a convolutional neural network, to predict the start and 

end time of an event of an equipment, as well as to predict the average demand of each device. In 

[8] the author sought to make an analysis of the various methods of deep learning to improve the 

performance of a NILM system. In [9], the authors used convolutional neural networks for the 

task of load disaggregation, promoting the individual identification of equipment loads based on 

the time series of the aggregate load. In [10], it is shown that CNN networks can also be used in 

the NILM context for equipment classification based on the VI path of an equipment. 

This work differs from the other works by the fact that it possesses a single variable as input 

(transient power signal), while several authors already mentioned as [6] use current harmonics, 

current waveform, active and reactive power. In the context of the deep neural networks cited in 
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[7-10], this study performed better than the evaluation metrics used. This is due to the difficulty 

of other methods in classifying multi-state appliances, such as the dishwasher and the washing 

machine. In addition, the CNN already presented in the literature need to transform the transient 

signal of each equipment in an image (spectrogram), to extract the characteristics of the image 

through the intensity of the colors and finally to make the classification, while in our approach we 

use directness the power signal, causing our CNN to interpret these values as being the color 

intensity in an image. 

2.2. Evaluating NILM Algorithms 

In order to evaluate the performance of the proposed system, some evaluation metrics have been 

used that are generally used to evaluate equipment identification systems in the context of NILM 

systems: 

Confusion Matrix: Allows an effective measure of the classification model, presenting the 

number of correct classifications versus classifications predicted for each class, on a set of 

examples [9]. The main diagonal presents for each class the correct classification number and the 

percentage that this number represents within the complete number of data of the class. 

Accuracy: presents the percentage of positive and negative samples correctly classified on the 

sum of positive and negative samples. 

FNFPTNTP

TNTP
Acc

+++

+
=                                                               (1) 

Being True positive (TP), the number of times an equipment is correctly classified as ON; True 

Negative (TN), the number of times an equipment is correctly classified as OFF; False Positive 

(FP) The number of times an equipment is incorrectly classified as ON and False Negative (FN) 

is the number of times an equipment is incorrectly classified as OFF. 

Sensitivity: percentage of positive samples correctly classified on the total of positive samples. 
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Precision: percentage of positive samples correctly classified on the total of samples classified as 

positive. 
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F-score: It is a weighted average of precision and sensitivity 
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3. CONVOLUTIONAL NEURAL NETWORK 

 
A convolutional neural network (CNN) can be considered as a variant of the neural network 

Perceptron of Multiple Layers (MLP). Instead of using fully-connected hidden layers, such as 
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MLP, the architecture of a CNN is based on the alternation of convolution layers - the layer that 

names the network; and pooling layers. Each layer will have a set of filters, also known as kernel, 

that will be responsible for extracting local features from an input. With this, we can create 

several convolution and pooling maps, containing several specific characteristics like borders, 

colour intensity, contours and shapes. Each feature map will have a shared set of weights, which 

decreases the computational complexity of the network [11]. Finally, we have the layer 

responsible for the classification process, which have the fully connected layer, which connects 

all the neurons of the layer before it to the output neurons, as shown in Figure 3. 

 

Figure 4 Illustration of the architecture of a CNN [11] 

 
For this approach, which is focused on the classification of equipment through the behavior of its 

power transients, an architecture based on three layers of convolution followed by pooling was 

used. Between each convolution and pooling layer normalization is applied in the filter sets 

(batches), which serves to accelerate network formation and reduce sensitivity for initialization. 

In addition, we used the non-linear activation function (ReLU) which is simply the identity 

function for positive values. After the 3 layers of convolution and pooling a fully connected layer 

is used, followed by the Softmax function. This architecture, derived from a reduction in the 

convolutional network GoogLeNet [12] (that has five layers of convolution always followed by a 

pooling), is represented in Figure 4, containing specifications such as: the number of filters in 

each layer, the size of the stride and the configuration of the output layer. 

The convolution layer consists of neurons that are responsible for extracting different sub-region 

resources from the input images [13]. These areas are derived from the filters used in this layer, 

being able to extract specific characteristics of the input. In this layer we specify the amount of 

filters, their sizes, in addition to the stride, which defines the size of the neighbourhood that each 

layer's neuron will process. [11] 

The Pooling layer follows the convolutional layer reducing the number of connections to the 

following layers, being Max-Pooling in our work. A Max-Pooling layer returns the maximum 

values obtained in its filters. This layer does not perform any learning, but reduces the number of 

parameters to be learned in the following layers. [13,11] 

The fully connected layer connects all the neurons of the anterior layer with the output neurons, 

which represent the classes to be classified. This layer combines all the characteristics (local 

information) learned in previous layers, sweeping the input to identify the highest standards. For 

our classification problem, it will combine the characteristics of the transients to classify the 

equipment. At the output of the classification layer, the Softmax activation function is applied 

which is responsible for performing the multi-class classification (for example: object 

recognition). [13,11] 
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Figure 5 CNN architecture developed for the proposal 

 

3.1. CNN Training 

The database for developing the identification system had 448 patterns, when all the 7 appliances 

were taken into account. Each pattern has 7 transient samples for a particular appliance, thus 

forming a bidimensional matrix (7x448). The data were divided into training, validation and test 

categories, comprising approximately 60%, 20% and 20% respectively for the total number of 

patterns. Table 2 shows the arrangement of the data in greater detail. 

Table 2. Data Organization. 

N° Equipment Trai

n. 
Valid. Test Total 

1 Refrigerator 60 14 15 89 

2 Microwave 65 14 15 94 

3 Stove 67 14 14 95 

4 Oven 60 14 13 87 

5 Dishwasher 61 12 15 88 

6 Air conditioning 55 12 13 80 

7 Washer / Dryer 80 15 18 113 

# Overall 448 95 103 646 

 

The approach involves the direct use of 7 samples of power supply transient signals of the 

appliances as an entry to the CNN, without the need for the application of signal processing to 

images such as spectrogram [14], or binary images [15]. All that was necessary to achieve this 

was to re-size the entry of the training matrix to 4D, and thus take on the dimensions of 

1x7x1x448, and in this way the CNN can interpret the data as a numerical 4-D matrix (an 

agglomeration of colored images). While the first three dimensions refer to height, width and 

channels, the last dimension must index the individual images, or rather, index the transients. 
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4. RESULTS 

Table 3 shows the results obtained for the test data, after the training of the projected CNN 

network. The result are given in the form of metrics: sensitivity (Sens), precision (Prec) and F-

score (F). The 3 assessment metrics used in this study can assist us in measuring the performance 

of the CNN from another perspective. Thus, for example, there are the Oven, Air-Conditioner and 

Washing-machine which were classified in a precise way, since they had a low amount of FP. 

However, they did not have the same level of performance for sensitivity, which measures the 

capacity of the system to predict correctly in the cases that really have it (TP). For this reason, the 

F-score is used to harmonize the two assessment metrics already mentioned and make a better 

comparison between the appliances by means of the F-score metric. Hence, it can seen from the 

analysis in Column F that the Air-conditioner and Oven had a score above 90%, which 

demonstrates that the model shown had an excellent performance. 

Table 3. Results for Test Data 

N

° 
Equipment Sens. Prec. F 

1 Refrigerator 0.8667 0.6842 0.7647 

2 Microwave 0.9333 0.7000 0.8000 

3 Stove 0.6429 0.7500 0.6923 

4 Oven 0.8462 1.0000 0.9167 

5 Dishwasher 0.6667 0.7692 0.7143 

6 Air conditioning 0.9231 1.0000 0.9600 

7 Washer / Dryer 0.8889 1.0000 0.9412 

# Overall 0.8239 0.8433 0.8270 

 
Table 4, in turn, shows the results obtained in the training, testing and validation simulations 

where the metrics used were accuracy and the F-score. On the basis of these results, it can be 

noted that although we are confronted with a complex classificatory problem, involving multi-

stage types of equipment, the CNN on average, had a general rate of accuracy of 82.43% and an 

F-score of 82.46%, which are very promising results. 

Table 4. Performance Results 

Simulation Acc. F 

Training 0.8795 0.8785 

Validation 0.7684 0.7685 

Test 0.8252 0.8270 

Geral     0.8243  0.8246 

 

Figure 5 shows the confusion matrix obtained for the test data which thus allows a broader view 

of the performance of our algorithm, as well as providing a detailed account of the results 

obtained in Table 3. The 6 appliances are defined as follows: Refrigerator (1), Microwave (2), 

Stove (3), Oven (4), Dishwasher (5), Air Conditioning (6) and washer/dryer (7). Each matrix 

column represents the categories of appliances predicted by the CNN, while the lines represent 

the real categories. The number of checks for each class can be found on the main diagonal of the 
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matrix. Thus, it can be inferred that the appliances that have FN values, had a reduction of 

sensitivity, such as the Stove and Dishwasher. The Refrigerator had the worst rate of precision 

owing to the fact that this appliance had had a high FP value, with 6 FP values and 13 TP values. 

However, the Washer-Dryer and Oven did not have any FP values, and attained a 100% precision 

rate. 

 
 

Figure 6 Confusion Matrix for Test Data 

 

4.1. COMPARISON WITH STATE OF THE ART 

 
In this section, we compare our results with some state-of-the-art NALM algorithms, proposed for 

low sampling rates and active power measurements. Table 5 presents the results of some systems 

already developed to identify equipment in NILM systems using as input the power transient 

measurements for low frequency. A direct comparison of results should be carried out with 

caution since for all the presented systems one has the database used for different training, test 

and validation and equipment and number of equipment also identified different. 
 

Table 5. Comparison between systems presented in the literature 

Authors Technique Nº of Appliance 

categories 

Sens Prec F Acc 

This Study CNN 7 0.82 0.84 0.82 0.82 

Kelly [7] Autoencoder 5 0.80 0.58 0.55 0.91 

Kelly [7] LSTM 5 0.69 0.39 0.39 0.68 

WONG [16] PDT 6 0.77 0.76 0.73 ----- 

Zhao [17] GSP 8 0.51 0.89 0.64 0.77 

[7] Uses long short-term memory; [16] Uses Particle-based Distribution Truncation (PDT) and [17] Uses 

Graph Signal Processing (GSP). 
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5. CONCLUSIONS 

In this article, we describe how to apply CNNs to the recognition of technical equipment in an 

innovative manner. From the results obtained, the efficiency of the proposed system is clearly 

evident, where a weighted average of precision and sensitivity was obtained that was higher than 

75%; and with an average degree of accuracy of 82%. The results obtained can be regarded as 

satisfactory when compared with the results of the identification systems already shown in the 

literature and also when account is taken of the complexity of the system put forward which was 

designed to identify loads in a multilevel or variable state.   

 

One point that should be stressed with regard to the direct use of the power supply transient signal 

as an entry to the identification system, is that it speeds up the system. This means that it is a 

system that can achieve good results in classification by using data where the measured power is 

of a low frequency. This is beneficial since the use of low frequencies is common in available 

low–cost measuring devices which are currently being used for the development of   NILM 

systems. 
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